
lable at ScienceDirect

Forensic Science International: Digital Investigation 40 (2022) 301338
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2022 EU - Selected Papers of the Ninth Annual DFRWS Europe Conference
A systematic approach to understanding MACB timestamps on Unix-
like systems

Aur�elien Thierry a, *, Tilo Müller b

a Deutsche Telekom Security GmbH, Bonn, Germany
b Hof University of Applied Sciences, Germany
a r t i c l e i n f o

Article history:

Keywords:
Digital forensics
Timestamps
Unix
POSIX
Linux
OpenBSD
FreeBSD
macOS
* Corresponding author.
E-mail addresses: aurelien.thierry@t-systems.com

hof-university.de (T. Müller).

https://doi.org/10.1016/j.fsidi.2022.301338
2666-2817/© 2022 The Authors. Published by Elsevier
a b s t r a c t

File timestamps are used by forensics practitioners as a fundamental artifact. For example, the creation of
user files can show traces of user activity, while system files, like configuration and log files, typically
reveal when a program was run. Despite timestamps being ubiquitous, the understanding of their exact
meaning is mostly overlooked in favor of fully-automated, correlation-based approaches. Existing work
for practitioners aims at understanding Windows and is not directly applicable to Unix-like systems. In
this paper, we review how each layer of the software stack (kernel, file system, libraries, application)
influences MACB timestamps on Unix systems such as Linux, OpenBSD, FreeBSD and macOS. We examine
how POSIX specifies the timestamp behavior and propose a framework for automatically profiling OS
kernels, user mode libraries and applications, including compliance checks against POSIX. Our imple-
mentation covers four different operating systems, the GIO and Qt library, as well as several user mode
applications and is released as open-source. Based on 187 compliance tests and automated profiling
covering common file operations, we found multiple unexpected and non-compliant behaviors, both on
common operations and in edge cases. Furthermore, we provide tables summarizing timestamp behavior
aimed to be used by practitioners as a quick-reference.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As files and file systems are central to most use of computing,
their analysis is a cornerstone of digital forensics. A deep under-
standing of how files are stored on a file system, such as described
by Carrier (2005), often allows to recover deleted files. File meta-
data, on the other hand, in particular timestamps, are key to un-
derstanding changes on a file system in order to reconstruct user
actions and programmatic events. Even if a file's content is not
available, for instance because it is encrypted, metadata can often
be used to reconstruct user behavior, as demonstrated by Grob et al.
(2019). During investigations of security incidents, file timestamps
can provide a useful view of files created or modified by unautho-
rized access, allowing investigators to efficiently focus on poten-
tially malicious files, as explained by Buchholz and Spafford (2004).

That is, besides the understanding of file systems, practitioners
can benefit from a deep understanding of timestamps behavior.
(A. Thierry), tilo.mueller@

Ltd. This is an open access article u
Looking at timestamps from a research perspective, two questions
arise:

1. What timestamps are modified by a given operation?
2. Given a set of timestamps, what happened on the machine on

the application level?

The second question is what ultimately matters for event
reconstruction, but answering it with certainty is in most cases not
possible. Answers to the first question are useful for analysts when
validating or refuting hypotheses related to the second question. In
this paper, we look at the basics and provide an extensive expla-
nation of timestamps on Unix-like systems focusing on the first
question. Our contribution includes an automated test and profiling
framework, which is available as open-source (os_timestamps), as
well as a set of human-readable tables that summarize our results
for practitioners. In order to cover applications on Linux, OpenBSD,
FreeBSD and macOS alike, our work spans from POSIX specifica-
tions to the user mode, including kernel implementations, mount
options and user libraries.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aurelien.thierry@t-systems.com
mailto:tilo.mueller@hof-university.de
mailto:tilo.mueller@hof-university.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301338&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301338
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2022.301338


Table 1
Software stack and specifications.

Examples Specified?

Application Vim, gedit, geany No
POSIX Utilities vi, cp, chmod, ls POSIX
Standard C/Cþþ libraries glibc, BSD libc, libstdcþþ POSIX
Other Libraries (Middleware) GTK, GIO, Qt, KIO No
Operating System Ubuntu, OpenBSD, FreeBSD, macOS POSIX
Kernel Linux, OpenBSD, FreeBSD, XNU POSIX
File system ext4, FFS1, UFS2, HFSþ No

A. Thierry and T. Müller Forensic Science International: Digital Investigation 40 (2022) 301338
1.1. Related work

Ridge et al. (2015) defined and published SibylFS (SibylFS), a
formal specification for POSIX and real-world file systems, along
with test suites and compliance checks covering Linux, BSD and
macOS. It is aimed to be used for validation of file systems and
operating systems in their development process. Giuliano
(Giugliano, 2019) extended SibylFS to cover timestamp updates.
SibylFS includes a specification andmodel for POSIX interfaces using
higher-order logic and proof systems and thousands of automatically
and hand-written tests. Tests run a sequence of POSIX interfaces and
the output of each is then checked against the model.

Chow et al. (2007) investigatedMAC timestamps onWindows XP
for NTFS file systems. The SANS Institute researches (Knutson, 2016)
and regularly publishes tables as posters (Windows Forensic
Analysis) (“Windows Time Rules”), focusing on NTFS timestamps
on Windows for standard operations (file copying, modification and
creation). Other, similar tables can be found online, published by
practitioners on blog posts. Tests are either manually conducted, or
automatically run but not reproducible because the experiments’
process (including source code) is not available. Galhuber and Luh
(2021) reviewed timestamp updates on Windows 10, focusing on
standard operations and timestamp forgery. They propose updates
to the reference tables from SANS. Ho et al. (Ho et al., 1016) studied
updates to timestamps on a cloud provider (OneDrive) when files are
handled from a Windows machine with NTFS and from an Ubuntu
computer with ext4. They published tables, useful for cloud foren-
sics, detailing how operations modify the MACB timestamps.

Multiple approaches attempt to reconstruct events using auto-
mated profiling and comparison. Most of such approaches, as
described by Soltani et al. (Soltani and Seno, 2017; Soltani et al.,
2017), are based on signature systems or correlation engines.
Signature systems consist in two steps: signatures are automatically
generated from running applications on pre-defined scenarios, then
real-world system states are matched against those signatures.
K€alber et al. (2013) designed a generic application fingerprinting
method for the NTFS file system, mostly based on timestamps
metadata. Correlation-based systems compute distances between
test scenarios and real-world states to find a fitting match.

Overall, SibilFS, which is a comprehensive approach to POSIX
compliance is limited to POSIX specifications and does not cover
automated profiling. Fully automated approaches have their value
in automatedworkflows but do not help understand the underlying
implementation details of timestamp updates. Furthermore,
existing work into mapping timestamp updates mostly focuses on
Windows environments and the NTFS file system, and are often not
reproducible because implementation details are notmade publicly
available. They also only cover user-facing operations such as ap-
plications and standard operations from the operating system, for
instance, copying a file, overlooking what happens deeper in the
software stack.

1.2. Contributions

To the best of our knowledge there is no existing systematic,
reproducible approach that analyzes MACB timestamps on Unix-
like systems. Our contributions to the field are:

1. An open-source framework1 able to test POSIX compliance and
to profile the software stack on Linux, FreeBSD, OpenBSD and
macOS for selected software libraries (Qt, GIO) and currently 15
applications.
1 https://github.com/QuoSecGmbH/os_timestamps.

2

2. An explanation of the timestamp behavior on those platforms.
We highlight behavior of common operations, non POSIX-
compliant behavior, as well as other unexpected behavior and
possible bugs.

3. Visual tables based on the results of point 1 and 2, aimed to be
used by practitioners.

For example, unexpected behaviors that could be treated as
bugs occur on FreeBSD when reading a file, or on macOS when
modifying timestamps. Also, BSD-based kernels do not update a
symbolic link's last access timestamp when being read or followed,
and FreeBSD does not update the last access timestamp of di-
rectories when performing directory listing.
2. Timestamps across the software stack

A software stack is a set of software subsystems that can operate
without running additional software. When running an end-user
application, the top of the stack is the application while the bot-
tom of the stack is the OS kernel and drivers. We exclude what
happens on the drive itself, both on the software level (firmware)
and on the hardware level.

Timestamp updates are induced by the top of the stack but
actual modifications happen at the very bottom when the kernel
writes to the file system. The software stack relevant for timestamp
updates (Table 1) contains file systems, kernels, configurations like
mount options, software libraries, including the standard C and
Cþþ libraries, as well as applications. The behavior of applications
and libraries regarding timestamp updates is not specified. POSIX
specifies utilities and interfaces like system calls and the standard
C/Cþþ libraries. Regardless of other specifications, file systems do
not precisely mandate usage of the metadata fields reserved for
timestamps.

Because application use involves multiple chained components
in the stack, typically at least the standard C library, the kernel and
the file system, it is critical to understand how each of those
components can alter timestamp updates. For instance under-
standing the standard C library yields results that can be general-
ized to many applications using it. Similarly, regardless of how
many files applications access, the mount option used by the
operating systemmay disable updates to the access time, making it
useless for forensics purposes.

Fig. 1 shows examples of the execution of operations modifying
timestamps across the software stack and the resulting timestamp
updates. Users on a specific OS run applications that will induce
timestamp updates. Arrows mostly represent functions, including
POSIX interfaces, used between layers of the software stack. Be-
tween kernels and file systems they represent mount options. The
examples and notations will be further explained in the paper.
3. POSIX

The Portable Operating System Interface (POSIX) (Standard for
Informa, 2018) is a set of specifications for Operating Systems

https://github.com/QuoSecGmbH/os_timestamps


Fig. 1. Examples of application execution and updated timestamps across the software stack.

A. Thierry and T. Müller Forensic Science International: Digital Investigation 40 (2022) 301338
(implementations). It aims to promote application portability across
the Unix world.

3.1. Scope

POSIX describes mandatory behavior for interfaces, shells and
utilities, that are command-line programs like cp or cat. Interfaces
refer to systems calls like read() and other functions including
functions of the standard C library (libc) such as fread().

Every timestamp update shall be described in the interfaces and
utilities specification. Beside mandatory behavior (expressed with
shall), optional behavior (expressed with may or need not) is also
described, usually to lift requirements in edge cases. Furthermore
some of the behavior is explicitly implementation-defined, leaving
room for heterogeneous behavior across implementations.

Each of the evaluated operating systems implement the general
design for timestamp updates (see Section 3.2) specified by POSIX.
They do not claim nor aim to be fully compliant, except for macOS
that is POSIX-certified2 against UNIX 03 since version 10.5 (Mac OS
X Leopard).

3.2. Timestamp principles

POSIX defines the MAC timestamps but does not specify any
creation timestamp (B):

C M: Last data modification timestamp.
C A: Last data access timestamp.
C C: Last file status change timestamp.

The C timestamp is typically modified when the file's metadata
(location, owner, access rights …) are changed and when the file is
modified (along with the M timestamp). It does not reliably indi-
cate when the file was created.

Timestamps shall be updated in two steps: they are first marked
for update and then actually updated, meaning that the relevant
metadata field on the file system is set to the current time. The time
interval between the two steps is in general left to the imple-
mentation but timestamps marked for update shall be updated
when the file ceases to be open (for instance following fclose())
or before execution of a POSIX function that directly reads or ma-
nipulates its timestamps (such as stat() and futimens()). Un-
less one of those occurs, the time interval between the two steps is
left to the implementation.
2 https://www.opengroup.org/openbrand/register/.

3

POSIX specifies precise behavior of timestamp-related in-
terfaces and utilities. For instance, while fopen() called with a
write mode (“w”) shall mark MC for update, fopen(”r”) shall not
have any impact on timestamps.

A typical file read using libc functions consists in the following
sequence: fopen(”r”), fread(), fclose(). In this case the ac-
cess timestamp shall be marked for update when fread() is
executed and the actual update shall happen at the latest when
fclose() is executed.

A file overwrite consisting in fopen(”w”), fwrite(),
fclose() shall mark MC for update when fopen() is executed
and again at some point between the execution of fwrite() and
fclose(), leaving room for a buffering implementation. The
actual update shall again happen at the latest when fclose() is
executed.

3.3. C and timestomping

Every POSIX-specified operation updating the last data modifi-
cation timestamp (M) also updates the last file status change
timestamp (C).

Timestamp modification is possible using, for instance, futi-
mens() to arbitrarily set the last access or modification timestamp.
No interface allows to set the last status change timestamp arbi-
trarily. Setting A or M with futimens() always triggers an update
to C, making it impossible within the POSIX specification to ante-
date or arbitrarily timestomp C. It is nevertheless possible with any
implementation through direct file system modification using
elevated privileges (typically root).

3.4. Automated compliance tests

This subsection describes how we designed our tests against
POSIX. Testing compliance of actual MAC updates for a single
operation against POSIX specification is described in Fig. 2. Files for
which POSIX specifies updates are called watched files. We first
prepare the environment and ensure watched files' timestamps
that may bemarked for update are actually updated (steps 1 and 2).
The core steps (4, 5, 6) consist in storing the current time before the
operation is run, running it, and storing the current time right after
it is run. Finally the watched files' timestamps are retrieved and
compared to the specification (steps 8 and 9). For instance, if a file's
access timestamp shall be updated, we check that t1 � tA � t2.

The tests rely on comparing system time (t1 and t2), typically
gathered with POSIX functions such as clock_gettime() against
timestamps from file systems (tMAC) obtained through stat().
System time and file system timestamps can be based on different,

https://www.opengroup.org/openbrand/register/


Fig. 2. Steps to test POSIX compliance of an operation that shall update timestamps.

Fig. 3. Steps to test POSIX compliance of an operation that shall mark timestamps for
update.

Table 2

A. Thierry and T. Müller Forensic Science International: Digital Investigation 40 (2022) 301338
coarse or truncated, values and such differences can lead a system
timestamp t1, fetched before tA was updated an fetched, to be
greater that tA. POSIX does specify that, when updated, assigned
timestamps shall be the greatest value supported by the file system
(through truncation) that is not greater than the current time. It
does not specify, neither for “current time” nor for file timestamps,
which exact clock (real time or coarse) shall be used, nor the res-
olution, precision or the exact interfaces that can be used to fetch
them. We looked into the implementations for timestamp updates
and aimed to fetch the same clock for current_time(), this
function is thus OS-dependent:

C Linux uses clock_gettime(CLOCK_REALTIME_COARSE)

for timestamp updates. It has a resolution of 1 ns.3 We used
the same function for current_time().

C OpenBSD uses an internal kernel function (getnanotime())
to update timestamps. It has a precision of 10 ms and reso-
lution of 1 ns.4 None of the clocks available in userland allows
to fetch similar clocks. We thus used a generic solution
consisting in opening, modifying, writing and closing an
existing file and then fetching its M timestamps with
stat().

C We used the same generic solution for macOS.
C FreeBSD, by default, uses an internal kernel function

(microtime()) to update timestamps, its resolution is 1 ms.
Though none of the clocks available in userland uses the
same function, the behavior is identical to using clock_-

gettime(CLOCK_REALTIME_PRECISE) and truncating its
result to the microsecond resolution. We implemented this
solution.

Delays (steps 3 and 7) are needed to make sure timestamps
updates are not confused with environment preparation nor with
the comparison steps. For instance a file timestamp marked for
update (but not updated) by the operation (step 5) would be
actually updated at step 8. It is thus crucial that observed current
times (as previously described, including resolution and truncation
issues) are different at steps 6 and 8. POSIX specifies timestamp
resolutions shall not be coarser than 1 s. Additionally, resolution for
system-wide clocks such as CLOCK_REALTIME shall not be coarser
than 0.02s. We use nanosleep(CLOCK_REALTIME) to implement
delays, asking for a 1.1s delay in order to take resolution constraints
into account.

Testing operations that shall solely mark timestamps for up-
dates (Fig. 3) can be achieved by using stat() before fetching t2
3 https://www.kernel.org/doc/html/latest/core-api/timekeeping.html#c.ktime_
get_coarse_clocktai_ts64.

4 https://github.com/openbsd/src/blob/
3756ed2f07591c8bd3fd94b6d7b1a49fa7d6e042/sys/sys/time.h#L256.

4

(steps 6 and 8 are inverted) to force actual update of timestamps
marked for update. The second delay (step 7) is rendered useless
and removed because tMAC is already stored and fetching t2 will not
modify it. Those tests will also match if timestamps are not only
marked for update but actually updated. Neither POSIX nor studied
implementations expose userland methods to observe inode flags
used to mark timestamps for update, so there is no portable way to
distinguish between “marked for update” and “actual update”. This
is not an issue in practice to test for compliance because POSIX
allows implementations to immediately update timestamps that
are marked for update.

The framework is written in C and covers checks against POSIX
compliance as well as low-level profiling of operating systems
(section 4) and libraries (section 5).
3.5. Results

We implemented a comprehensive test suite with 187 POSIX-
compliance tests including 177 tests against mandatory behavior.
We additionally implemented 92 tests against intuitively expected
behavior or edge cases not specified by POSIX.

Table 2 shows the number of passed and failed tests for each
system. Most failed tests are related to two special cases which are
not interesting from a forensics standpoint. No considered imple-
mentations complies with updates to standard streams (stdin,
stdout, stderr), whose timestamps shall be updated when
reading or writing to them. Additionally, when abort() causes
process termination after a file write, POSIX mandates that MC be
marked for update, and ultimately updated when the file ceases to
be opened. All considered implementations cancel the whole
operation, losing the data that was only buffered and not already
written, and skipping timestamp updates.

Linux, when using the strictatime mount option (see sub-
section 4.2), passes all the other mandatory tests for POSIX-
compliance. OpenBSD, FreeBSD and macOS do not pass the
readlink() tests because readlink() does not update the ac-
cess timestamp of the read symbolic link. Moving a directory locally
with rename() and mv is also not-compliant on OpenBSD and
FreeBSD, as explained in subsection 4.5. Apart from this OpenBSD
has a few irrelevant failed tests because some interfaces and utili-
ties are not implemented or were deprecated, such as gets() and
unlink.
Passed and failed mandatory POSIX-compliance tests.

OS Passed Failed

Linux 163 14
OpenBSD 156 21
FreeBSD 161 16
macOS 142 35

https://www.kernel.org/doc/html/latest/core-api/timekeeping.html#c.ktime_get_coarse_clocktai_ts64
https://www.kernel.org/doc/html/latest/core-api/timekeeping.html#c.ktime_get_coarse_clocktai_ts64
https://github.com/openbsd/src/blob/3756ed2f07591c8bd3fd94b6d7b1a49fa7d6e042/sys/sys/time.h#L256
https://github.com/openbsd/src/blob/3756ed2f07591c8bd3fd94b6d7b1a49fa7d6e042/sys/sys/time.h#L256


Table 3
Utility mkfifo on macOS marks MAC for update but does not actually update them.

Time Command Result

12:00:08 mkfifo fifo

12:00:08 sleep 60

12:01:08 stat fifo MAC ¼ ¼ 12:00:34

A. Thierry and T. Müller Forensic Science International: Digital Investigation 40 (2022) 301338
FreeBSD and macOS are non-compliant on some irrelevant edge
cases. For instance chmod used to set a file's mode to the same value
it already has, inducing no change to the file, shall still update C but
does not. Both implementations however have interesting non-
compliance on some edge cases.

FreeBSD does not update a the access file of the directory when
performing directory listing (ls). Additionally reading a file with
FreeBSD's read() does not always trigger an update to Awhen the
file was already recently read. The root cause of this behavior is
being investigated, it is at this point not clear whether this is a bug
or an undocumented feature.

On macOS, setting a file's A timestamp, for instance with
futimens, fails unexpectedly. The behavior of utility mkfifo is also
unique onmacOS: it solelymarks the created FIFO's MAC for update
and does not actually update them. This is actually the mandatory
POSIX behavior: interface mkfifo() shall mark MAC for update and
utility mkfifo shall be equivalent to the interface. It technically does
not break the requirement that files marked for update shall be
updatedwhen the file ceases to be open because mkfifo() does not
use the open() interface. This results in the unexpected though
arguably compliant behavior that a terminal user can create a FIFO
which timestamps are later than when the command ran. Table 3
demonstrates running mkfifo then waiting 60 s before looking at
the FIFO's timestamps, the timestamps were actually updated 26 s
after the mkfifo command returned. Alternatively observing the
timestamps immediately after mkfifo results in the timestamps
being updated much quicker.
4. Operating systems and kernels

Linux, FreeBSD andmacOS implement a fourth file timestamp to
store the file creation time (B for birth). The tested OpenBSD
version supports file systems with this fourth timestamp but do not
fill it (it always has the null value). All considered operating systems
implement shared file system behavior (such as inodes and meta-
data) under an abstraction layer (VFS or Virtual File System) that can
be superseded by code specific to each file system.We analyzed the
behavior of each operating system on their default file systems for
storage of user data.
4.1. File systems

On Linux the default file system for/home partitions is ext4. It
allows, by default, storage for MACB timestamps with a resolution
of 1 ns. If configured with smaller inodes (128 bytes instead of the
default 256 bytes), MAC timestamps have resolution of 1 s and the B
timestamp is omitted (Fairbanks, 2012).

FFS1 on OpenBSD allows storage for MAC timestamps with a
resolution of 1 nanosecond but does not have a field for the creation
timestamp (B). Although FFS2 has a field for the creation time-
stamp, the kernel does not use it: it is always zero.

UFS2 on FreeBSD stores MACB timestamps and the OS can be
configured to use one of the following resolutions: 1 s, 1 ms
(default), 1 ns.

HFSþ (also called Mac OS Extended) on macOS stores MACB
timestamps with a resolution of 1 s.
5

4.2. Mount options

By default Linux mounts file systems with the relatime option,
updating the access timestamp (A) only if it was earlier or equal to M
or C, or if it was at least 1 day old. Thus, by default, Linux skipsmost A
updates and performs other updates normally. This behavior in itself
makes Linux non POSIX-Compliant but is viewed as an acceptable
trade-off for performance. Additional mount options on Linux are:

C strictatime: A updates are always performed
C noatime: A updates are never performed
C nodiratime: A updates are never performed for directories

When skipping A updates with noatime or nodiratime the A
timestamp is only filled when the file created.

OpenBSD, by default, honors all MAC updates and supports a
noatime option, which performs A updates only if M or C is also
marked for update. This limits the number of updates to the access
timestamps without making it totally useless.

FreeBSD and macOS, by default, honor all MACB and support a
noatime option, which skips all A updates (like on Linux).

4.3. B and timestomping

Linux and OpenBSD do not provide a way to modify the birth
timestamp, interfaces setting timestamps such as futimens() can
only set M or A. These interfaces on FreeBSD and macOS addi-
tionally allow arbitrary modifications to the B timestamp. This
possibility is directly available to users through the touch utility.
The last file status change (C) timestamp cannot be arbitrary set and
is updated when either M, A or B is set.

As a result, on FreeBSD and macOS, only the C timestamp is
somewhat resistent to timestomping, while B is also resistent on
Linux. On OpenBSD, the B timestamp has always the null value.
Again, a user with elevated or root privileges is able to change any
timestamp by directly modifying the file system.

4.4. Automated profiling

Tests against POSIX compliance provide an atomic view of
timestamp updates. For forensics applications we are more inter-
ested in most common operations such as File Creation, Read,
Write, Execute, Copy, and Delete.

Multiple implementations were written for each operation in
order to automatically profile timestamp updates, using POSIX-
defined interfaces and utilities. For instance File Read has two
implementations:

C Interfaces: fopen(”r”) þ fread() þ fclose()

C Utility: cat

We created a virtual POSIX-compliant profile for each operation.
We then ran profiling on Ubuntu Linux, OpenBSD, FreeBSD and
macOS and compared them together. Automated profiling (Fig. 4)
watches a selected number of files for changes and flags each
timestamp with the updates it went through. Table 4 lists possible
flags for each timestamp. Flags are simplified and ordered (MACB)
into a single character. Profiling outputs a.csv file with the results.
Identical results within a group are expected and merged. Fig. 5
shows the result of the File Read operation with the file (file) and
its parent directory (dir/) being watched as well as the File Rename
operationwith the source file (src), destination file (dst) and parent
directory (dir/) being watched.

Because files are watched based on their path, a renamed file is
detected as having different timestamps as before the operation



Fig. 4. Steps for automated profiling.

Fig. 5. Sample CSV output of automated profiling on Ubuntu.

A. Thierry and T. Müller Forensic Science International: Digital Investigation 40 (2022) 301338
(maCb): M, A and B are inherited from the source file and C is
updated. But the File Rename operation only moves the file,
changing its name but keeping the same inode. The results need to
be interpreted: M, A and B are actually not updated while C is
updated. This interpretation is taken into accounts into our results,
modifying the actual profile (..C.) for this operation.

The implementation is integrated into the C framework and
supports C/Cþþ profiling tests.
4.5. Results

Table 5 and Table 6 summarize timestamp parameters and
mount options across operating systems. Fig. 6 compiles what
happens on the OS-level for the most common operations. Results
are only divided into POSIX and implementations when they
diverge. Non POSIX-compliant behavior is framed. The middle
rows, for instance New File/Dir, focus on updates happening on files
while the bottom rows describe updates of directories on opera-
tions involving themselves, for instance Dir Traversal, or operations
to their children, such aswhen a file is beingmoved into it (see “Dir:
Dir Moved into”).

For instance reading a file will update its last access timestamp
(A) while other timestamps will not be modified. On Linux if the
default mount option (relatime) is used and the file's last access
timestamp was not older than one day, this timestamp update will
actually be skipped and the operation will update no timestamp.

Most timestamp updates specified by POSIX are straightfor-
ward. For instance a file newly created gets updated MAC and its
modified parent directory sees its MC timestamps being updated.
Moving files and directories locally is only partially specified.
rename() shall update MC of the parent directories but nothing is
specified for the file itself, implying that its timestamps shall not be
Table 4
Flags attributed to each {M,A,C,B} timestamp after profiling.

Flag Name Single character Description

ERROR ! stat() failed, mostly becau
ZERO 0 Timestamp has now the null
UPDATE M/A/C/B Timestamp was updated
EQ . Timestamp was not modified
SAMEAS_W0_\{M,A,C,B\} m/a/c/b Timestamp is now the same
EARLIER e New timestamp is now earlie
LATER þ New timestamp is now later

Table 5
Timestamp resolution and support for the birth timestamp.

POSIX Linux (ext4)

Timestamp Resolution
(default) �1s 1ns
Birth timestamp (B) No Yes

6

modified. POSIX however states that, in some implementations, mv
updates C. Implementations indeed differ on how to handle local
file and directory move, macOS being the only implementation not
updating C for this operation.

Additionally, moving a directory into another directory (Local
Dir Move) is a tricky operation that differs from the simple Rename
operation (changing its name without changing its parent direc-
tory). Firstly, implementations need to check that the source
directory is not an ascendant of the target directory, otherwise
parts of the file system would be orphaned and unreachable. On
OpenBSD this results in all checked directories to get an updated A
(see Dir: Dir Moved into (Local)). Secondly, the directory's entry
pointing to its parent directory (..) is modified, updating MC on
OpenBSD and FreeBSD.

Moving files and directories across volumes (Volume File Move)
is an interesting operation because rename() does not work across
volumes. Our setup consists in mounting a second partition using
the same file system as the main tested partition, for instance a
second ext4 partition on Linux. POSIX mandates that mv imple-
ments a duplication of the source file into the destination file sys-
tem. The involved interfaces or utilities are not specified, macOS for
instance directly uses the cp utility then attempts to restore the
properties of the original file. The destination file shall inherit from
the MA timestamps of the source file and, as with files moved
locally, C may be updated. Linux attributes the destination an
updated birth timestamp while on FreeBSD and macOS the desti-
nation file inherits the B timestamp from the source file.

The default mount option (relatime) on Linux makes it non-
compliant. With the strictatime mount option, all profiled op-
erations are compliant.

OpenBSD, FreeBSD and macOS have non-compliant operations.
Reading of following symbolic link on these BSD-based OS do not
update the last access timestamp of the link. Additionally FreeBSD
does not update the last access timestamp of a directory when
performing directory listing.
se the file no longer exists
value

as the original \{M,A,C,B\} value of the first watched file (typically the source file)
r as its original value
as its original value

OpenBSD (FFS1) FreeBSD (UFS2) macOS (HFSþ)

1ns 1ms 1s
No Yes Yes



Table 6
Mount options related to timestamp updates. Default options are in bold; the relatime, nodiratime and noatime options are not POSIX-Compliant.

Mount option Linux (ext4) OpenBSD (FFS1) FreeBSD (UFS2) macOS (HFSþ)

(default) MCB updates are all performed MAC updates are all performed, B is always 0 MACB updates are all performed
relatime (default) A updates are performed if A was earlier

or equal to M or C, or at least 1 day old
(No)

strictatime A updates are always performed (No)
nodiratime A updates are never performed for directories (No)
noatime A updates are never performed A updates are performed only if M or C is also marked for update A updates are never performed

Fig. 6. OS-level MACB updates on POSIX, Linux, FreeBSD, OpenBSD, macOS.

A. Thierry and T. Müller Forensic Science International: Digital Investigation 40 (2022) 301338
5. Middleware

Applications make extensive use of software libraries (Middle-
ware) providing primitives to interact with file systems. We already
described and tested POSIX-compliance of the Standard C and Cþþ
libraries. The Standard C/Cþþ Libraries are the only middleware
specified by POSIX and, to the best of our knowledge, timestamp
updates are not specified for the other software libraries described
in this paper. Most Linux distributions, including Ubuntu, use the
GNU C Library (glibc),5 OpenBSD, FreeBSD and macOS each have
their own libc implementation.

The investigated operating systems run complex graphical ap-
plications which are out of POSIX's scope, for instance applications
belonging to popular desktop environments like GNOME and KDE.
Investigating middleware allows to better understand and gener-
alize timestamp updates. For instance two GNOME applications
using the same primitives to handle file modifications will exhibit
the same behavior regarding timestamp updates.

We focused on GTK for GNOME and Qt that are popular to
implement graphical applications on Unix-like systems. Both are
5 https://www.gnu.org/software/libc/.

7

cross-platform, supporting Linux, Windows and macOS. They are
also available on OpenBSD and FreeBSD. GLib is the low-level li-
brary developed for GTKþ and GNOME applications. GIO (Gnome
Input/Output) is the C library providing GLib general purpose I/O
that can be used instead of POSIX primitives, its implementation is
built upon system calls and the standard C library. The Qt frame-
work, written in Cþþ, is extensively used by KDE applications but
can also be used by other applications. Additionally to Qt, KDE has
its own library implementing many file management functions,
KIO.
5.1. Automated profiling

Middleware functions were tested on the same operations like
File Read and Write, using the same steps used for profiling oper-
ating systems (Fig. 4). The tests are implemented within the same
C/Cþþ framework.
5.2. Results

We implemented tests for GIO and Qt, but not yet for KIO. We
ran the tests on our Ubuntu setup and compared the results to
baseline OS behavior. No unexpected behavior were found when

https://www.gnu.org/software/libc/


Table 7
Profiling text editors.

Editor IO Middleware Read Modify

Vim eclean POSIX A MACB
Emacs POSIX A MACB
Code::Blocks POSIX Aa MACB
gedit GTK A MACB
Bluefish GIO A MACB
Geany GIO A MACB
TeXstudio Qt A MACB
JED S-Lang A MACB
Kate KTextEditor (KIO) A MAC
Atom Electron A MAC
Vim nowritebackup POSIX A MC
Nano POSIX A MC
Leafpad POSIX A MC
Visual Studio Code Electron A MC
Notepadqq Qt A MC
Sublime Text (Unknown) A MC

a Code:Blocks, when reading an empty file, does not modify any timestamp.

A. Thierry and T. Müller Forensic Science International: Digital Investigation 40 (2022) 301338
testing the Qt functions. GIO exhibits unexpected behavior for File
Copy and implements two alternatives for File Write.

5.2.1. File Copy
When copying a file into a new or an existing file using the GIO

function g_file_copy, the destination file exhibits almost the
mACB update pattern, preserving the access timestamp instead of
updating it like cp does by default. Modification timestamp is
inherited from the source file while the access, birth and status
change timestamps are updated. Interestingly modification and
access timestamps are truncated to the microsecond resolution.
The truncation is an old GIO bug, first reported in2010,6 triaged as
“low priority” and being in 2021 actively worked on.

The POSIX-compliance behavior for file copy (MACB) differs from
GIO (mACB), this is not a compliance issue because GIO does not aim
for POSIX compliance and POSIX does not specify Middleware nor
Application behavior. In combination with the truncated MA
timestamps, this difference helps differentiate files copied using cp

with default options or using a file manager implemented with GIO
such as Nautilus.

5.2.2. File Write
GIO has a counterpart to the standard fopen(”rw”), g_fil-

e_open_readwrite. Using this function and writing to the stream
returned will update MC as expected. An alternative is to use the
function g_file_replace, which returns an output stream for
overwriting the file. Documentation7 states it may first write to a
new file before renaming it to overwrite the original file. When
writing to a file using g_file_replace, the destination file has
updated MACB timestamps, validating that it is actually a new file.

6. Applications

Forensics examiners are ultimately interested in how applica-
tions modify timestamps. We focused on file editors and file
managers.

6.1. Automated profiling

Applications were tested using the same steps than for profiling
operating systems (Fig. 4). In order to cover graphical applications,
the implementation is a separate framework, written in python3,
and uses pyautogui to simulate user input through keystrokes.

6.2. Results

Automated tests cover 15 popular file editors on Linux including
Vim, Emacs, gedit, Geany, Sublime Text, Visual Studio Code and
Kate. Our tests cover typical actions such as File Read and Write,
along with edge cases such as reading an empty file. Except on
some edge cases, including reading an empty file, editors only differ
in how they write to files.

6.2.1. File modify
When saving to disk a modified file, editors either directly write

to the modified file (M.C.) or first write to a new file before
replacing the original file with the new one, typically with
rename(), as previously described for GIO and resulting in MACB
being updated. Atom and Kate also access the file when modifying
it in-place (MAC.). Editors using GIO exhibit the MACB (Table 7)
pattern because they use the g_file_replace function, but they
6 https://gitlab.gnome.org/GNOME/glib/-/issues/369.
7 https://docs.gtk.org/gio/method.File.replace.html.

8

could alternatively implement file write with low level IO functions
fromGIO and obtain the other behavior. Similarly, Qt and POSIX can
be used to implement any of the behavior.

6.2.2. Reading an empty file
Opening an empty file with the editor Code:Blocks does not

update its access timestamps although the same operation with
other editors modifies A. Most editors read files by chunks (for
instance Vim uses chunks of 8192 bytes), resulting in the sequence
open(r), read(count¼8192). According to POSIX, read()

when count is not zero shall update A, even if the number of bytes
actually read is zero. Codeblocks however first uses stat() to
determine the file size and then reads the whole file with
read(count¼filesize), resulting in read(count¼0) when
reading an empty file. When count is zero, POSIX states that
read() may return early and skip timestamp updates, explaining
the different result with Code:Blocks.

6.3. Manual tests on file managers

We performed manual tests on selected file managers. Nautilus
exhibits the GIO bug happening where copying a file with
g_file_copy: modified and access timestamps are truncated to the
microsecond resolution. This is also a known bug,8 first filed in
2010. Two further file managers, Dolphin and pcmanfm, do not
exhibit this exact behavior but have similar issues where nano-
second timestamps are truncated.

7. Discussion

7.1. Considerations

Our project profiles timestamps dynamically while the system is
running. Noise from other programs or from the OS, such as a file
indexer or an IDE (Integrated Development Environment), can alter
the results and users need to carefully interpret the results to filter
out the noise. Similarly the tested systems need to be configured to
not skip timestamp updates. Linux in particular is tested with the
non-default mount option strictatime, the default relatime

options acting like a filter for timestamp updates at the bottom of
the software stack.
8 þþhttps://bugs.launchpad.net/ubuntu/þsource/nautilus/þbug/642.596.

https://gitlab.gnome.org/GNOME/glib/-/issues/369
https://docs.gtk.org/gio/method.File.replace.html
https://bugs.launchpad.net/ubuntu/+source/nautilus/+bug/642.596
https://bugs.launchpad.net/ubuntu/+source/nautilus/+bug/642.596
https://bugs.launchpad.net/ubuntu/+source/nautilus/+bug/642.596


Table 8
Tested operating systems.

System Version File System Machine

Linux Ubuntu 20.04.3 LTS, Linux 5.10.0 ext4 mounted with strictatime Lenovo P1
OpenBSD 6.8 FFS1 VirtualBox
FreeBSD 13.0-RELEASE-p4 UFS2 VirtualBox
macOS 10.13.6 (Supported until 2020) HFSþ Mac mini

A. Thierry and T. Müller Forensic Science International: Digital Investigation 40 (2022) 301338
Testing the same systems on various versions and new updates
will be needed to keep tables up-to-date. However, apart from
fixing kernel bugs and major changes such as new file systems, we
expect little change to working IO implementations. Indeed appli-
cations using GIO for IO are unlikely to change because it works
mostly as intended. Middleware and application bugs are not al-
ways quickly fixed and are reasonable candidates for forensics ar-
tifacts to identify application use, as attests the 11-year-old GIO bug
affecting Nautilus.

7.2. Related work

SibilFS’ work on POSIX-compliance for timestamps (Giugliano,
2019) was published after we began implementation of our tests
on POSIX-compliance. We cover some cases that are not imple-
mented in SibilFS, such as the readlink() interface which is not
compliant on tested BSD systems. We believe however that SibilFS
is a solid, more formal approach to POSIX-compliance, and that it
would obtain similar results to ours once missing tests cases are
implemented. On the practical side, contrary to SibilFS which uses
OCaml, our approach of POSIX-compliance only uses system calls
and the standard C/Cþþ library that are likely to already be present
on tested systems. Pre-compiled binaries could be used to avoid
installation of developer tools (GCC, CMake) and limit our foot-
prints on the tested system. Furthermore we used POSIX specifi-
cations as a baseline to find interesting differences and combined
the results with automated profiling of the software stack, which
goes beyond the scope of SibilFS.

7.3. Future work

The list of tested systems, versions and configuration is given in
Table 8. Future work could cover FFS2 on OpenBSD, newer macOS
versions with the APFS file system, and add automated testing for
KIO and file managers. We also want to cover Android and iOS,
which are based on Linux and BSD, respectively.

8. Summary

We designed and implemented a framework to test POSIX-
compliance and profile timestamp updates across Unix-like sys-
tems. We used the framework to extensively describe how Unix-
like systems such as Linux, OpenBSD, FreeBSD and macOS update
MACB timestamps, from a user action in an application to the
kernel level and file system.

We found multiple unexpected and non-compliant behavior,
both on common operations and in edge cases and provide tables
that can be used by practitioners as a quick reference. Some un-
expected behavior of FreeBSD when reading a file and of macOS
when setting timestamps should be further analyzed as potential
bugs. Operating systems based on a BSD kernel, including macOS,
do not update a symbolic link's last access timestamp when being
read or followed, and FreeBSD does not update the last access
9

timestamp of directories when performing directory listing. Mid-
dleware and file editors implementing file write bywriting first to a
new file before moving it over the original file exhibit a different
timestamp than those modifying the file in-place, and both
implementations are common. A bug in the GIO library, used by the
Nautilus file manager, reduces timestamp resolution to the micro-
second and could be used to identify Nautilus use.

Acknowledgments

We thank FAU (Friedrich-Alexander-Universit€at) students
Berenger Temgoua Dibanda and Niclas Pohl for their contribution
to the framework as part of their Bachelor thesis and Professor Felix
Freiling for his guidance on the project and his reviews.

References

Buchholz, F., Spafford, E., 2004. On the role of file system metadata in digital fo-
rensics. Digit. Invest. 1, 298e309. https://doi.org/10.1016/j.diin.2004.10.002.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Chow, K., Law, F.Y., Kwan, M.Y., Lai, P.K., 2007. The Rules of time on NTFS file system.

In: Second International Workshop on Systematic Approaches to Digital
Forensic Engineering. SADFE’07, pp. 71e85. https://doi.org/10.1109/
SADFE.2007.22.

Fairbanks, K.D., 2012. An analysis of ext4 for digital forensics. Digit. Invest. 9,
S118eS130. https://doi.org/10.1016/j.diin.2012.05.010 the Proceedings of the
Twelfth Annual DFRWS Conference. https://www.sciencedirect.com/science/
article/pii/S1742287612000357.

Galhuber, M., Luh, R., 2021. Time for truth: Forensic analysis of ntfs timestamps. In:
The 16th International Conference on Availability, Reliability and Security, ARES
2021. Association for Computing Machinery, New York, NY, USA. https://doi.org/
10.1145/3465481.3470016 doi.org/10.1145/3465481.3470016.

Giugliano, A., 2019. Towards Verified File Systems. Ph.D. thesis. URL. https://
leicester.figshare.com/articles/thesis/Towards_verified_file_systems/10220159.

Groß, T., Ahmadova, M., Müller, T., 2019. Analyzing android's file-based encryption:
information leakage through unencrypted metadata. In: Proceedings of the
14th International Conference on Availability, Reliability and Security, ARES ’19.
Association for Computing Machinery, New York, NY, USA. https://doi.org/
10.1145/3339252.3340340 doi.org/10.1145/3339252.3340340.

S. Ho, D. Kao, W.-Y. Wu, Following the breadcrumbs: timestamp pattern identifi-
cation for cloud forensics, Digit. Invest. 24. doi:10.1016/j.diin.2017.12.001.

K€alber, S., Dewald, A., Freiling, F.C., 2013. Forensic application-fingerprinting based
on file system metadata. In: 2013 Seventh International Conference on IT Se-
curity Incident Management and IT Forensics, pp. 98e112. https://doi.org/
10.1109/IMF.2013.20.

Knutson, T., 2016. Filesystem Timestamps: What Makes Them Tick?, Tech. Rep.
SANS Institute.

os_timestamps: Profile timestamp updates on your Unix-like OS. https://github.
com/QuoSecGmbH/os_timestamps.

Ridge, T., Sheets, D., Tuerk, T., Giugliano, A., Madhavapeddy, A., Sewell, P., 2015.
SibylFS: Formal Specification and Oracle-Based Testing for POSIX and Real-
World File Systems. Association for Computing Machinery, New York, NY,
USA, pp. 38e53. https://doi.org/10.1145/2815400.2815411. URL.

SibylFS. https://sibylfs.github.io/.
Soltani, S., Hosseini Seno, S.A., Sadoghi Yazdi, H., 2017. Event Reconstruction using

Temporal Pattern of File System Modification. IET Inf. Secur. 13. https://doi.org/
10.1049/iet-ifs.2018.5209.

Soltani, S., Seno, S.A.H., 2017. A survey on digital evidence collection and analysis.
In: 2017 7th International Conference on Computer and Knowledge Engineer-
ing. ICCKE2, pp. 247e253. https://doi.org/10.1109/ICCKE.2017.8167885.

IEEE Standard for Information Technology - Portable Operating System Interface
(POSIX®), Tech. Rep. Base Specifications, 2018. The Open Group Standard. Issue
7.

Windows Forensic Analysis (Poster), Tech. Rep., SANS Institute.

https://doi.org/10.1016/j.diin.2004.10.002
http://refhub.elsevier.com/S2666-2817(22)00007-5/sref2
https://doi.org/10.1109/SADFE.2007.22
https://doi.org/10.1109/SADFE.2007.22
https://doi.org/10.1016/j.diin.2012.05.010
https://www.sciencedirect.com/science/article/pii/S1742287612000357
https://www.sciencedirect.com/science/article/pii/S1742287612000357
https://doi.org/10.1145/3465481.3470016
https://doi.org/10.1145/3465481.3470016
https://leicester.figshare.com/articles/thesis/Towards_verified_file_systems/10220159
https://leicester.figshare.com/articles/thesis/Towards_verified_file_systems/10220159
https://doi.org/10.1145/3339252.3340340
https://doi.org/10.1145/3339252.3340340
https://doi.org/10.1109/IMF.2013.20
https://doi.org/10.1109/IMF.2013.20
http://refhub.elsevier.com/S2666-2817(22)00007-5/sref10
http://refhub.elsevier.com/S2666-2817(22)00007-5/sref10
https://github.com/QuoSecGmbH/os_timestamps
https://github.com/QuoSecGmbH/os_timestamps
https://doi.org/10.1145/2815400.2815411
https://sibylfs.github.io/
https://doi.org/10.1049/iet-ifs.2018.5209
https://doi.org/10.1049/iet-ifs.2018.5209
https://doi.org/10.1109/ICCKE.2017.8167885
http://refhub.elsevier.com/S2666-2817(22)00007-5/sref16
http://refhub.elsevier.com/S2666-2817(22)00007-5/sref16
http://refhub.elsevier.com/S2666-2817(22)00007-5/sref16

	A systematic approach to understanding MACB timestamps on Unix-like systems
	1. Introduction
	1.1. Related work
	1.2. Contributions

	2. Timestamps across the software stack
	3. POSIX
	3.1. Scope
	3.2. Timestamp principles
	3.3. C and timestomping
	3.4. Automated compliance tests
	3.5. Results

	4. Operating systems and kernels
	4.1. File systems
	4.2. Mount options
	4.3. B and timestomping
	4.4. Automated profiling
	4.5. Results

	5. Middleware
	5.1. Automated profiling
	5.2. Results
	5.2.1. File Copy
	5.2.2. File Write


	6. Applications
	6.1. Automated profiling
	6.2. Results
	6.2.1. File modify
	6.2.2. Reading an empty file

	6.3. Manual tests on file managers

	7. Discussion
	7.1. Considerations
	7.2. Related work
	7.3. Future work

	8. Summary
	Acknowledgments
	References


