

Incident Response & Forensics

Wir sind Ihr Spezialist für die Erkennung, Abwehr und Behandlung digitaler Angriffe.

LEISTUNGSÜBERSICHT

	Digitale Forensik	Incident Response	Technische Lösungen			
Ausführung Durchführung technisch forensischer Analysen zur Klärung der Sachlage		Analyse, Kommunika- tion und Koordination im Bedrohungs- oder Sicherheitsvorfall	Konfiguration und Imple- mentierung relevanter Sicherheitslösungen			
Rahmen- verträge	Vereinbarung von Rahmenverträgen oder kontinuierlichen Dienstleistungen in den drei Bereichen					
Beratung	Unterstützung in und Durchführung von Projekten im Sicherheitsbetrieb; speziell Auditierung, Ausführung von Übungen, Erstellung von Prozeduren und Richtlinien					

Who are we?

Aurélien Thierry

- Malware Analysis (automated detection) in academia (PhD)
- Worked for Airbus CyberSecurity: Malware Analysis + Forensics + Incident Response

@QuoSec:

- Forensics + Incident Response + Malware Analysis
- Security Engineering
- Banking sector
- French
- <u>a.thierry@quosec.net</u> (@yaps8)

Security in a corporate environment What is IT Security?

What do you want to secure?

- Information (data including personal data)
- Systems (machines)
- Business
- Employees
- Users
- •

Fundamental security properties:

- Confidentiality
- Integrity
- Availability

Attack: exfiltrate trade secrets

- 1. Prepare your C2 infrastructure
- 2. Network scan (outside)
- 3. Vulnerability scan
- 4. Phishing:
 - 1. Find names of some employees (Google, LinkedIn...)
 - 2. Prepare malicious document + mail
 - 3. Sending to multiple surname.name@corp.com
- 5. Malware installation and connection to C2 (persistence)
- 6. Network scan (inside)
- 7. Vulnerability scan: **File share is vulnerable**
- 8. Vulnerability exploit
- 9. Access the documents
- 10. Exfiltrate data to C2

Defense strategy

Prepare:

- Network segregation
- Patch and harden systems

Monitor:

- Know your network
- Collect log and alerts from network
 - ▶ IDS / IPS: Intrusion Detection System
- & from hosts:
 - Antivirus / Endpoint Protection
 - ► SIEM: Log management

Detect:

- Have a team looking into logs and alerts
- Escalate attacks

Respond:

- Analyze / Understand the attack(er)
- Block the attacker
- Enhance your security

Monitoring challenges

SOC (Security Operations Center):

- Receives logs and alerts
- Escalates attacks to the incident response team
- Ticket-based workflow

False negative:

Attack that is not detected

False positive:

- Legitimate action that is detected as an attack
- Risk of "drowning" the analysts with garbage

Triage effectively?

- Not every alert is an attack
- Not every attack needs incident response

Monitoring challenges

SOC (Security Operations Center):

- Receives logs and alerts
- Escalates attacks to the incident response team
- Ticket-based workflow

False negative:

Attack that is not detected

False positive:

- Legitimate action that is detected as an attack
- Risk of "drowning" the analysts with garbage

Triage effectively?

- Not every alert is an attack
- Not every attack needs incident response

L1 - First contact - 24/24 7/7

- Point of contact for employees/customers
- Sees many false positives
- Triages to L2 with explicit guidance (example: ignore this IDS rule that makes mostly false positives)

L2 – Analyst – office hours + on call

- Investigates and triages with public and private data
- Asks the customer further information (what is this machine?)
- Reports directly or raises incidents to L3

<u>L3 – Incident Response</u> – **office hours + on call**

- Reviews previous data
- Asks for technical data (drive / memory images, files, Event logs, firewall logs...)
- Does deep technical analysis
- Drives the response with the customer

Attackers and defenders (adversarial field)

Technical security is extremely difficult.

- Arms race
 (new attack → new defense → new attack ...)
- Attackers need to find one way in
 - ► Technical and human vulnerabilities (Phishing, social engineering...)
- Defenders need to defend them all
 - ► Comply with laws (can't attack back)
- Attackers have the initiative
- Defenders (should) know their assets, network, company ...
 - Control their infrastructure (disconnect, poweroff ...)
 - Take back initiative & control

xkcd.com

Threat Intelligence Know You Enemies

Type of attackers: https://www.recordedfuture.com/cyber-attack-kill-chain/

APT (Advanced Persistent Threat):

- Sophisticated threat actor
- Political or economical objectives
- Nation states (NSA...)

Threat Intelligence

Know You Enemies: Emotet + TrickBot + SamSam

Attack complexity "You get the attackers you deserve"

Common point in:

- Metasploit
- Mimikatz
- Empire
- QuasarRAT
- ...?
- Open-source offensive tools, maintained on GitHub
- Ready to use "out-of-the-box"
- Used by attackers in real attacks, including advanced attackers

Why?

- Cheaper
- Harder to attribute

APT attackers don't like to burn their fancy 0-days.

- Use phishing
- Exploit weak passwords
- Exploit unpatched systems
- Exploit weak security policy
- ...have the same kind of 3-Tier support system as SOCs?...

Technically:

- Use open-source offensive projects
- Use open-source malware
- Use existing commercial malware
- Use custom malware
- Use custom exploit/payload for known vulnerabilities
- Find and use 0-days

Initial Access

Attack Vectors Commonly Used in Ransomware Incidents: Q2 2019

https://www.coveware.com/blog/2019/7/15/ransomware-amounts-rise-3x-in-q2-as-ryuk-amp-sodinokibi-spread

Personal experience:

- Email Phishing
- Bad password policy (SSH / RDP):
 - Weak passwords
 - Password reuse
- Unpatched software:
 - ► A bit behind on updates
 - ▶ OS unsupported for years... (Windows XP, RHEL 6...)

• 0-day vulnerability in custom software (web-app)

Incident Response Phishing Campaign

From Elen Baks <elen.baaks_578@gmail.com>☆ Subject Invoice 4567 - Ready for paiement To Blake Johnson

blake.johnson@corp.com>☆ Please find attached the invoice for May. Best regards, Elen @ 1 attachment: invoice 4567.docx 828 kB invoice 4567.docx 828 kB

Incident Response Roles: Who does what?

Threat Intelligence Analyst

- 9. Recognizes attack pattern of known threat actor (e.g. GC01)
- 10. Looks for related malware (e.g. cobint)
- 11. Looks for connections to https//bldr.tst.net (example)

Incident Manager

1. Is notified of suspicious email

- 6. Disconnects machine
- 7. Change passwords
- 8. Blocks the URL

12. Blocks related URL (e.g. https//bldr.tst.net)

Forensics Analyst

- 2. Comes from outside
- 3. User opened attached file on Tuesday at 9AM

13. Performs a malware and network scan

Malware Analyst

- 4. Identifies Malware: (e.g. **TaurusKit**)
- 5. Sends password to https://shdoc.com (example)

Incident Response Incident lifecycle (SANS, NIST)

Forensics?

- Preparation
 - Define and know your assets / network / people / processes
 - Prepare your technical defenses
- Identification
 - Detect the attack and initiate IR
 - Identify compromised assets
- Containment
 - Collect technical evidence
 - Mitigate impact (disconnect machines...)
- Eradication
 - Disinfect / re-image machines
 - Block relevant artifacts (hostnames, malware...)
- 5. Recovery
 - Ensure re-infection is not possible (patch systems...)
 - Regain operational capabilities (reconnect machines...)
- Lessons Learned
 - Update techniques and processes

Phishing Campaign Forensics

Many people had the same phishing email

• One user reported that he clicked...

Forensics Analysis of his machine

- Collect volatile artifacts (RAM image)
- Power off and remove the hard drive
- Take an image with a write-blocker:
 - Do not overwrite the disk
 - Use dcfldd to compute hash while copying

Two options:

- Hardware write blocker (Tableau) + any Linux + dcfldd
- Linux with software write blocker (DEFT Zero) + dcfldd

dcfldd if=/dev/sdb of=/mnt/image.raw bs=4M hash=md5,sha1,sha256

Always work on images to preserve evidence. May be crucial if there is a legal case.

Forensics Useful artifacts

Forensics goals on one machine:

- What is the attack entrypoint?
- What other machines / accounts are compromised?
- What did the attacker do?

RAM image analysis with **volatility**:

- Running processes
- Suspicious processes/DLL/drivers
- Commands from cmd.exe, powershell...
- Processes memory
- Opened files (handles)
- Network connections

Hard drive analysis:

- MFT: file system forensics + timestamp forensics
- Windows Registry: malware persistence...
- Event logs: login/logoff...
- Scheduled tasks: malware persistence...
- Prefetch, ShimCache, AmCache: which application was launched / when?
- Shadow Copy Volumes: system backups
- Application logs
- Files: Malware detection (yara), Malware Analysis...

Master File Table (NTFS) Timestamp Forensics

http://www.kazamiya.net/en/fte/MFT

Reference on file systems forensics:

• File System Forensic Analysis (**Brian Carrier**)

MACB:

- M: Modification (Data) Time
- A: Access (Data) Time
- C: Change (Metadata) Time
- B: Birth

Standard Information:

- Can be read and modified with API
- Can be faked by regular user

File Name:

- Only parsed and written by kernel, no API access
- Needs Admin rights + code to fake

Windows® Time Rules

\$ S T A N D A R D _ I N F O R M A T I O N

File Creation

Modified -Time of File Creation

Access -Time of File Creation

Α

M

Α

C

B

Metadata -Time of File Creation

> Creation -Time of File Creation

File Access

Modified -

No Change

Access -

(No Change only

on NTFS Win7+)

Metadata -

No Change

ime of Access

File Modification

> Modified -Time of Data Modification

Access -No Change

Metadata -Time of Data Modification

Creation -Creation -No Change No Change

File Rename

Modified -

Access -No Change

No Change

Metadata -Time of File Rename

Creation -No Change

Copy

Modified – Inherited from Original

> Access -Time of File Copy

Metadata – Time of File Copy

Creation -Time of File Copy

Local File Move

Modified -No Change

Access – No Change

Metadata -Time of Local File Move

Creation -Time of File No Change Move via CLI

Volume File Move (cut/paste

via Explorer) Modified – Inherited from Original

> Access -Time of Cut/Paste

Metadata -Inherited from Original

Creation -Inherited from Original

File **Deletion**

Modified -No Change

> Access -No Change

Metadata -No Change

> Creation -No Change

Windows

NTFS

MACB updates

Creation

Modified -Time of File Creation

Access -Time of

Metadata –

File Creation

Time of File Creation

Creation -Time of File Creation

File Access

Modified -No Change

Access – No Change

Metadata -No Change

Creation -No Change

Modificatio

Modified -No Change

Access -No Change

Metadata -No Change

Creation -No Change

File Rename

Modified -No Change

Access -No Change

Metadata -No Change

Creation -No Change

Copy

\$ F I L E N A M E

Modified -Time of File Copy

Access -Time of File Copy

Metadata – Time of File Copy

Creation -Time of File Copy

Local File Move

Modified -No Change

> Access -No Change

Metadata -No Change

Creation -No Change

Volume File Move (move via CLI)

Volume

File Move

(move via CLI)

Modified -

Inherited

from Original

Access -

Time of File

Move via CLI

Metadata -

Inherited

from Original

Creation -

Modified – Time of Move via CLI

Access -Time of Move via CLI

Metadata -Time of Move via CLI

Creation -Time of Move via CLI

Volume File Move (cut/paste via Explorer)

Modified -Time of Cut/Paste

Access -Time of Cut/Paste

Metadata -Time of Cut/Paste

Creation -Time of Cut/Paste

File Deletion

Modified -No Change

> Access -No Change

Metadata -No Change

Creation -No Change

Starting your forensics analysis

- You are part of a chain of people working on the case
- Incident detected:
 - Security Monitoring ("suspicious attachment")
 - Symptoms ("machine blocked")
- You should already have some context:
 - ▶ What has already been observed?
 - ▶ When did it happen?
 - ▶ What has already been done?

Timestamp Forensics

"User opened suspicious email on 21/11/2019"

```
Thu Nov 21 2019 13:09:17 3834,mac.,"C:/.../AppData/Local/Microsoft Outlook/16/Autob aurelien.thierry.perso@outlook.com xml"
Thu Nov 21 2019 13:09:17 4083,mac.,"C:/.../AppData/Local/Microsoft Outlook/eab82e5a99a0e/4d9015f0222b0acba - Autodiscover.xml"

Thu Nov 21 2019 13:09:30 48,...b,"C:/.../AppData/Local/Microsoft/Windows/
Thu Nov 21 2019 13:09:30 48,...b,"C:/.../AppData/Local/Microsoft/Windows/
Thu Nov 21 2019 13:09:51 144,...b,"C:/.../AppData/Local/Microsoft/Windows/
Thu Nov 21 2019 13:09:51 144,...b,"C:/.../AppData/Local/Microsoft/Windows/
Thu Nov 21 2019 13:09:53 160,...b,"C:/.../AppData/Local/Microsoft/Windows/
Thu Nov 21 2019 13:09:53 144,...b,"C:/.../AppData/Local/Microsoft/Windows/
Thu Nov 21 2019 13:09:53 144,...b,"C:/.../AppData/Local/Microsoft/Windows/
Thu Nov 21 2019 13:09:53 144,...b,"C:/.../AppData/Local/Microsoft/Windows/
Mozilla/Firefox/Forfiles/wux47sc7.default/cache2/trash29259 ($FILE_NAME)"

[...]
Thu Nov 21 2019 13:09:55 166,macb,"C:/.../AppData/Roaming/Mozilla/Firefox/Profiles/wux47sc7.default/storage/default/https+++send.firefox.com/
($FILE_NAME)*

[...]
Thu Nov 21 2019 13:10:01 13:09:55 166,macb,"C:/.../Downloads/update_installer.exe"
Thu Nov 21 2019 13:10:21 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:31 13:09:3
```

```
The Sleuth Kit - <a href="https://www.sleuthkit.org/">https://www.sleuthkit.org/</a>
fls -r -m C: /dev/sdb2 > fls.out
mactime -b fls.out -d > mactime_d.out
```

- 1. Email received through Outlook
- 2. ...with document attached (INetCache)
- 3. Link clicked on document preview
- 4. Executable downloaded through Firefox (probably on send.firefox.com)
- 5. Executable launched (Prefetch .pf file)

Timestamp Forensics External hard drive data

Analysis of a NTFS-formatted USB stick

invoice.docx:

 Modified on another machine then copied to the stick (File Copy)

```
invoice.docx
M: Thu Nov 14 12:26:11 2019
A: Fri Nov 22 07:55:06 2019
C: Fri Nov 22 07:55:06 2019
B: Fri Nov 22 07:55:06 2019
```

Timestamp Forensics POSIX: Linux, OpenBSD, FreeBSD

- POSIX specifies MAC timestamps
- Linux, OpenBSD, FreeBSD are "reasonably" compliant
- Some differences

Directory listing:

readdir() shall mark for update the last data access
 (A) timestamp

ls dir/

- Linux, OpenBSD: A updated
- FreeBSD: A not updated

Access/Read timestamp (A) is not always updated for performance reasons:

- Win7+: A is not updated on File Access (read)
- Linux: with relatime (default) A is updated only if M or C is earlier or if A is at least 1 day old
- FreeBSD: A is always updated (default)
- OpenBSD: A is always updated (default), or with **noatime** A is only updated if the operation also updates M or C

MACB Timestamps Profile Linux, OpenBSD, FreeBSD

```
./profile_os
File Creation (PROFILE.OS.FILE.NEW):
dir/
  М.С.
newfile
  MACB
File Rename (PROFILE.OS.FILE.RENAME):
src
  !!!!
dst
  >>C>
dir/
  М.С.
```

On-going project to automatically profile OSes

```
> M/A/C/B is same as src file/dir
M/A/C/B M/A/C/B is updated to current time
. M/A/C/B is not modified
! Error (mostly: the file did not exist anymore)
```

https://github.com/QuoSecGmbH/os_timestamps

MACB Timestamps Profile Linux, OpenBSD, FreeBSD

Linux MACB Timestamps

М	Last data Modification
A	Last data Access
С	Last file status Change
В	Birth
Resolution	1 nanosecond
M/A/C/B	M/A/C/B is updated to current time
m/a/c/b	M/A/C/B is inherited from m/a/c/b of source file/dir
	M/A/C/B is not modified

Mount Option	Description				
(default)	MCB updates are all performed				
relatime (default)	A updates are performed if A was earlier or equal to M or C, or at least 1 day old				
noatime nodiratime strictatime	A updates are never performed A updates are never performed for directories A updates are always performed				

	New File/Dir	File Read /Execute	Symlink Read/Follow	File Write	File/Dir Change	New/Delete Hardlink	Local File/Dir Move	Volume File/Dir Move	File/Dir Copy (new)	File Copy (existing)
	touch, mkdir	cat, exec()	readlink	>, >>	chmod, chown	ln, rm	m∨	m∨	ср	ср
M	M	•	•	M	•	•	•	m	M	M
A	A	A	A				•	a	A	
С	С		•	С	С	С	С	С	С	С
В	В				•			В	В	

	Dir Traversal	Dir Listing	Dir: New/Rename Child (File/Dir/Hardlink)	Dir : Delete Child (File/Dir/Hardlink)	Dir: Child Read/Exec/Write/Change	
	cd	ls	touch, mkdir, ln, mv, cp	rm, m∨	cat, readlink, >>	
M			M	M		
A	•	A		•		
С		•	С	С		
В	•			•	•	

Ransomware quality GandCrab

Malware Analysis:

- Malware family?
- Malware type? (RAT, Ransomware, cryptostealer...)
- What does it do?
- Is it persistent? How?

Constraints:

- Quick Analysis (1 day max)
- Manual Reverse Engineering
- Antivirus
- Sandbox
- Online Submission
- Virus Total (hash only)

Indicators Of Compromise (IOC)

Forensics:

- Hostnames: kjfske-office.co.ru
- Email addresses: hello_motto_cot@gmail.com
- URL: https://dropbox.com/pages/mal_43_page/
- IP: 45.23.43.12
- File (malware):
 - ► Name: reg32_b.exe
 - ► Path: C:\\Windows\iexplore.exe
 - SHA256: 15d67cf44f20acaed6ddd655bb95c4766df77859f aef95abcbdb2a3aeb4cf9b0
- Registry value

. . .

Incident Response: What to do now?

- Detect them (IDS, AV...)
- Block them (Firewall, IPS, AV...)
- Find other compromised machines/accounts
- Clean machines?
- Disconnect infected machines?
- Find related attacks
- Share IOC with partners

Incident Response Incident lifecycle (<u>SANS</u>, NIST)

- 1. Preparation
 - 1. Define and know your assets / network / people / processes
 - 2. Prepare your technical defenses
- 2. Identification
 - Detect the attack and initiate IR
 - 2. Identify compromised assets
- 3. Containment
 - 1 Collect technical evidence
 - 2. Mitigate impact (disconnect machines...)
- 4. Eradication
 - Disinfect / re-image machines
 - Block relevant artifacts (hostnames, malware...)
- 5. Recovery
 - 1. Ensure re-infection is not possible (patch systems...)
 - 2. Regain operational capabilities (reconnect machines...)
- 6. Lessons Learned
 - 1. Update techniques and processes

Traditional forensics applied to IT-Security

Traditional Digital Forensics (full-drive imaging, police work):

• Preserving evidence is priority #1

Chain of Custodity is filled

Evidence is handed over

Write Blocker attached

Hard Disk is mounted

Hard Disk is imaged (cloned)

500GB drive = up to 500GB image size = analysis of 500GB data!

33

- Need to image volatile data (RAM...)
- Encryption?
- Can you physically remove/image the drive?

Critical server:

- Critical to business: website, production line...
- Needs to stay up and connected

Multiple employees' machines are infected:

How long does imaging + analysis + disinfection take?

Rob Lee (SANS, 2018):

- "... less than 1% of the total data of a hard drive is all the data you will need to solve a case as that is all your tools forensicate and parse the rest is "data" and mostly junk."
- "we aren't seizing the entire "kitchen" if a body is found in it just the evidence that is usable."
- You only need a forensics data (<1% of the drive) + some malicious files (<1% of the drive)

What about personal information?

Traditional forensics applied to IT-Security

Traditional Digital Forensics (full-drive imaging, police work):

• Preserving evidence is priority #1

Chain of Custodity is filled

Evidence is handed over

Write Blocker attached

Hard Disk is mounted

Hard Disk is imaged (cloned)

500GB drive = up to 500GB image size = analysis of 500GB data!

Cyber Forensics (selective imaging):

Volatile Data is collected

<u>Targeted</u> data is collected

(Original evidence is preserved)

500GB drive = ~ 1% of size + Memory size

- Quicker collection
- Can be done remotely (cheaper)
- Machine is still usable
- Good for large-scale incident response and triaging
- Less forensically-safe

Issues:

- User / IT has touched/turned off the device
- You may still need full images after triaging

Traditional forensics applied to IT-Security

Traditional Digital Forensics (full-drive imaging, police work):

• Preserving evidence is priority #1

Chain of Custodity is filled

Evidence is handed over

Write Blocker attached

Hard Disk is mounted

Hard Disk is imaged (cloned)

500GB drive = up to 500GB image size = analysis of 500GB data!

Cyber Forensics (selective imaging):

Volatile Data is collected

<u>Targeted</u> data is collected

(Original evidence is preserved)

500GB drive = ~ 1% of size + Memory size

• A combination:

Volatile Data is <u>collec</u>ted Targeted data is collected

Write Blocker attached

Hard Disk is mounted

HDD is cloned

Selective imaging / Live forensics

Run an application on the compromised machine to collect relevant artifacts only

- No need to remove the drive
- Quicker imaging
- Remote imaging
- Large scale imaging

Selective Imaging Revisited (2013):

- Johannes Stüttgen, Andreas Dewald and Felix C. Freiling
- Formal definition of selective imaging and partial images
- Implementation using AFF4 storage

- FTK Imager https://accessdata.com/product-download
- FastIR https://github.com/Fast-IR/Fastir_Collector
- <u>DFIR-ORC</u> <u>https://github.com/DFIR-ORC/dfir-orc</u>
- GRR https://github.com/google/grr

Assess:

- What artifacts are collected?
- What artifacts/data is modified by the imaging?
- Forensically sound?

DFIR-ORC

- Selective imaging tool by ANSSI (French agency for IT-Sec)
- Windows only
- Open-Source: https://dfir-orc.github.io

Modular framework:

- Possible to add binaries (other tools)
- Configuration with XML files
- Config files included as PE resources

DFIR-ORC: Usage

```
PS C:\Users\xach\Desktop\bin\dfir-orc-config\output> .\DFIR-Orc.exe /keys
Mothership v10.0.11
DFIR-Orc v10.0.11
Start time
                       : 06/09/2020 05:21:40.171 (UTC)
Computer
                       : XACH-PC
Full Computer
                       : xach-PC
User
                       : xach-PC\xach (elevated)
System type
                       : WorkStation
System tags
                       : OSBuild#7601,SP1,Windows7,WorkStation,x64
Operating System
                       : Microsoft Windows 7 Professional Service Pack 1 (build 7601), 64-bit
Output directory
                       : C:\Users\xach\Desktop\bin\dfir-orc-config\output (encoding=UTF8)
: C:\Users\xach\AppData\Local\Temp\WorkingTemp (encoding=UTF8)
         directory
Log file
                       : DFIR-ORC_WorkStation_xach-PC_20200609_052140.log
                       : No global override set (config behavior used)
Repeat Behavior
Priority
                       : Low
[X] Archive: Main (file is DFIR-ORC_WorkStation_xach-PC_Main.7z)
        [X] Command SystemInfo
        [X] Command Processes
        [X] Command GetEvents
        [X] Command Autoruns
        [X] Command NTFSInfo
        [ ] Command NTFSInfoHashPE
        [X] Command FatInfo
        [ ] Command FatInfoHashPE
        [X] Command USNInfo
        [X] Command GetArtefacts
[X] Archive: Hives (file is DFIR-ORC_WorkStation_xach-PC_Hives.7z)
        [X] Command GetSystemHives
        [X] Command GetUserHives
        [X] Command GetSamHive
[ ] Archive: Yara (file is DFIR-ORC_WorkStation_xach-PC_Yara.7z)
        [X] Command GetYara
[X] Archive: CollectedFiles (file is DFIR-ORC_WorkStation_xach-PC_CollectedFiles.7z)
        [X] Command CollectFiles
```

DFIR-ORC: Reconfigurable through PE resources

Ongoing Project Selective imaging: ORC improvements

Forensics soundness:

- Enforce integrity of collected evidence
- Evaluate impact of imaging on the system

Improvement of ORC output:

- Currently a bunch of .7z files
- Provide a single AFF4 archive

Full-drive imaging VS selective imaging

Useful artifacts (Windows):

- RAM
- Machine name, version, user, harddrive info...
- File timestamps (MFT)
- Targeted files (paths or YARA rule)
- Registry hives
- Windows Events (EVTX)
- Prefetch files
- AmCache, BITS
- Files

Memory Analysis (volatility)

Selective imaging (ORC)

Full-drive imaging

Windows Registry

- Hierarchical database (tree)
- Stores settings
- Are stored in registry files:
- HKEY_LOCAL_MACHINE HKEY_USERS HKEY_CURRENT_CONFIG C:\System32\Config\SAM Software Fonts System C:\Users\John\Ntuser.dat CurrentControlSet Control Print SERVICES > TSDDD

Registry Editor

 ✓ ■ Computer

File Edit View Favorites Help Computer\HKEY_LOCAL_MACHINE

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

Name

ab (Default)

Type

REG_SZ

Data

(value not set)

- Run keys:
 - Are executed when windows launches (persistence)

Windows Registry: Shell bags

Shell bags:

- Windows remembers folders browsed through Windows Explorer (GUI)
- It is used to know the user preference (icons type, window position...)
- Gives some forensics artifacts (timestamps)
- Need specific parser

Windows Registry: Shell bags (EnCase)

Windows Events (EVTX)

- Windows stores many events (logs)
- Stored into .evtx files
- Login (4246)/Logoff, type gives details:
 - ► 2: console (keyboard)
 - ► 3: network
 - ► 7: unlock
 - ▶ 10: RDP
 - **...**
- Network share access
- Virus detected
- •

"Malware can hide, but it must run" (SANS)

Malware running:

- Found in RAM
- Leaves traces on drive:
 - ▶ Prefetch file is created for each running .exe
 - **...**

Persistent malware:

- Run keys (Registry)
- Windows services
- Scheduled tasks
- Modified/patched binary
- . . .

Rootkit hiding from the system:

- Full-drive image necessary
- May hide in rare locations (MBR...)
- May hide elsewhere (device firmware...)

Supertimeline (N artifacts -> 1 merged timeline)

Plaso and log2timeline:

- https://github.com/log2timeline/plaso
- Timeline generation and analysis (visualization / filtering...)
- Merge all (timestamps) logs and forensics artifacts into a single timeline

Vindows81	ndows81_Windows2012R2_SYSTEM_AppCompatCache.tsv su				nromanoff-mactime-timeline-final.csv >	(
rag a co		n head	der here to group by that	column		
Line	_	Tag	Timestamp	macb	Meta	File Name
	16		2012-04-03 12:58:11	m.c.	16430-128-4	C:/ProgramData/Microsoft/Windows/Power Efficiency Diagnostics/energy-report.html
	17		2012-04-03 12:58:11	mac.	330-144-6	C:/ProgramData/Microsoft/Windows/Power Efficiency Diagnostics
	18		2012-04-03 12:58:11	m.c.	47900-128-4	C:/ProgramData/Microsoft/Windows/Power Efficiency Diagnostics/energy-report-latest.xml
	19		2012-04-03 12:58:11	macb	60199-128-1	C:/ProgramData/Microsoft/Windows/Power Efficiency Diagnostics/energy-report-2012-04-03.xml
	20		2012-04-03 17:08:53	m	42857-128-1	C:/Users/nromanoff/AppData/LocalLow/Microsoft/CryptnetUrlCache/MetaData/F063BF7EF604434CBE00F
	21		2012-04-03 18:08:50	macb	0	[SHIMCACHE] \??\C:\\$Recycle.Bin\S-1-5-21-2036804247-3058324640-2116585241-1673\\$RR3GW21.e
	22		2012-04-03 18:08:50	macb	0	[SHIMCACHE] \??\C:\dllhost.exe
	23		2012-04-03 18:08:50	macb	0	[SHIMCACHE] \??\C:\dllhot.exe
	24		2012-04-03 18:33:16	.acb	0	[IEHISTORY] explorer.exe->:2012040320120404: vibranium@:Host: www.msn.com PID: 296/Cache ty
	25		2012-04-03 18:33:16	.acb	0	[IEHISTORY] explorer.exe->:2012040320120404: vibranium@http://www.msn.com/?ocid=iehp PID: 2
	26		2012-04-03 20:25:31	.a.b	60240-128-4	C:/Windows/Prefetch/ATBROKER.EXE-FF58B71D.pf
	27		2012-04-03 20:25:36	.a.b	60241-128-4	C:/ProgramData/Microsoft/Search/Data/Applications/Windows/GatherLogs/SystemIndex/SystemIndex.41
	28		2012-04-03 20:25:36	.a.b	60242-128-4	C:/ProgramData/Microsoft/Search/Data/Applications/Windows/GatherLogs/SystemIndex/SystemIndex.41
	29		2012-04-03 20:25:38	.a.b	60244-128-4	C:/Windows/Prefetch/USERINIT.EXE-F39AB672.pf
	30		2012-04-03 20:25:38	.a.b	60245-128-4	C:/Windows/Prefetch/DWM.EXE-AEABE78B.pf
	31		2012-04-03 20:25:40	.a.b	60250-128-4	C:/Windows/Prefetch/VMWARETRAY.EXE-1DBB7768.pf
	32		2012-04-03 20:25:40	.a.b	60251-128-4	C:/Windows/Prefetch/VMWAREUSER.EXE-83D1845B.pf
	33		2012-04-03 20:26:18	macb	0	[Handle (Key)] MACHINE\SAM\SAM\DOMAINS\BUILTIN lsass.exe PID: 592/PPID: 464/POffset: 0x7dd79
	34		2012-04-03 20:26:18	.a.b	60252-128-4	C:/Windows/Prefetch/NETPLWIZ.EXE-23BBB05C.pf
	35		2012-04-03 20:26:42	.a.b	43048-128-4	C:/Windows/Prefetch/GPSCRIPT.EXE-9E16401F.pf
	36		2012-04-03 20:38:07	mac.	2571-144-1	C:/Windows/System32/GroupPolicy
	37		2012-04-03 20:38:07	b	394-144-1	C:/Windows/System32/GroupPolicy/Machine
	38		2012-04-03 20:38:07	m.c.	58169-128-1	C:/Windows/System32/GroupPolicy/gpt.ini
	39		2012-04-03 20:38:13	mac.	394-144-1	C:/Windows/System32/GroupPolicy/Machine
					· · · · · ·	
Code\Ti	meline	Explore	'\TimelineExplorer\TestData\508\	nromanoff\nroman	off-mactime-timeline-final.csv	Total lines 8,146 Visible lines 8,

Forensics imaging at scale (1 machine -> N machines)

For IT departments:

- Possible to prepare (install solution on perimeter)
 - ► Endpoint security solutions from AV vendors
 - ► Open-source solutions (custom GRR configuration)
- Train security team

For customers:

- No previous installation
- "Fire and forget"
- ORC: 1 binary to run, only need to fetch output
- Deployment:
 - Manually (a few machines)
 - ► GPO
 - PsExec
 - Asset Management solution
 - ...
- Selective imaging: lower risk of personal information leak
- Analysis at scale?

Incident Response + Forensics

Security:

- Attackers vs Defenders
- Absolute security is not possible
- Techniques + Process + People

Defend:

- Identify critical assets
- Prepare your defense
- Monitor + Detect + Respond

Incident Response Issues:

- Time
- Do not impact business
- Many infected machines at the same time
- Lots of data
- User or IT compromised the evidence

Forensics:

- Start from the context (Detect)
- Lots of different artifacts
- Timestamp forensics works on all OSes
- Malware analysis must be quick
- Selective imaging:
 - Quicker than full-disk imaging
 - Remote
 - ► How to make it forensically sound?

Radilostr. 43 60489 Frankfurt am Main

curious@quosec.net